The Biggest Thing to Happen to Biomedicine in Decades?

The Biggest Thing to Happen to Biomedicine in Decades?

Geneticist George Church on CRISPR, Editing Embryos, and Bringing Back the Woolly Mammoth

; George Church, PhD

Disclosures

March 15, 2016

9

This feature requires the newest version of Flash. You can download it here.

Editor's Note: Over the course of his 30-plus-year career, George Church has pioneered not one, but several transformative fields in medicine, including genomic sequencing, synthetic biology, and, most recently, genome engineering. In this One-on-One, Medscape Editor-in-Chief Eric Topol talked with Dr Church about his many research interests, the promise and controversy of CRISPR gene editing, and how he never gets bored.

From Dropout to Harvard Scientist-Engineer

Eric J. Topol, MD: Hello. This is Medscape One-on-One. I'm Eric Topol, editor-in-chief of Medscape. I'm delighted to have with me George Church, one of the most noted scientists, engineers, and geneticists in the world, and certainly one of the most interesting people in all of biomedicine. George is a professor at Harvard, where he has done an immense amount of work.

People in the medical community may not be familiar with your background. You were at Duke and received combined degrees in 2 years in zoology and chemistry. And then something happened during your postdoctoral work, when someone told you, "Forget it."

George Church, PhD: I flunked out during my PhD and had to go to a lesser university, Harvard, for my PhD with Walter Gilbert.

Dr Topol: Then you were at University of California, San Francisco, for a stretch?

Dr Church: Yes, I worked with Gail Martin on embryonic stem cells and then returned to Harvard in 1986.

Dr Topol: You have expanded your reach. Can you tell us about the Wyss Institute [at Harvard]?

Dr Church: The Wyss Institute is about biologically inspired engineering. It's basically innovative and an incubator for translation into companies.

Dr Topol: Do you want to be known more as an engineer or a scientist?

Dr Church: I overlap from basic science to putting things into societal settings.

Dr Topol: You have done so many different things over the course of your career—everything from sequencing the genome and involvement in many companies related to that, to synthetic biology. You wrote one of the most extraordinary books, Regenesis. That book had a special feature, with its 70 billion copies.

Dr Church: This was an experiment that I did with my own hands. I used a computer program to translate the book into DNA. Then I made 70 billion copies of it, which was more than the sum of the top 100 books of all time. Then I read it out with next-generation sequencing. And this has now taken on a life of its own. It's becoming a real industry.

Dr Topol: Do you think that data storage in DNA will actually take off?

Dr Church: Yes. We have had funding from Technicolor, and we've been encoding some of their archival movie footage. It is a very special application—it's archiving information. It's very challenging to do that for long periods of time, with changing standards and degrading media. DNA has an amazing record of 700,000 years without particularly good technology. And there's no disk drive that's quite in that league yet. It's a million times smaller than any other media.

Dr Topol: There may be a future there, and even more likely so since you've gotten involved.

Bringing Back the Woolly Mammoth

Dr Topol: What about the de-extinction work that you have been doing, where you are trying to bring back extinct animals?

Dr Church: Increasingly it's being seen more as environmental ecological conservation of current ecosystems. As it turns out, there are keystone species that are sometimes missing. That's definitely true for the tundra, which is one of the biggest ecosystems in the world, in Siberia and Canada. At the same time, the Asian elephants are endangered. The idea is to extend their range back out to their nearest relative, which is the mammoth. We happen to have very high-quality DNA sequences for this extinct species. We are basically trying to make cold-resistant Asian elephants to save that species and save the carbon that's locked in the tundra.

Dr Topol: Is this possible?

Dr Church: We've experienced stranger things. They actually like the cold. They'll play in the snow. It's just getting them from zero to minus 40.

Dr Topol: Is that a side project?

Dr Church: That is a side project. It's adequately funded, but our main work is on finding therapies for human diseases.

Dr Topol: Yes, let's get into that. But you are involved in a bunch of projects—you do need a lot of stimulation! I can't imagine that you ever get bored.

Dr Church: No, definitely not.

Dr Topol: So how many people work in the Church lab?

Dr Church: We have about 100 right now.

CRISPR: Its Promise and Controversy

Dr Topol: This is not the only other area, but this is an area of significant effort right now—genome editing. The CRISPR revolution has taken us by surprise. You and I are close to the same age and we lived through the Asilomar Conference [on Recombinant DNA]. In the 1970s, what was the big controversy?

Dr Church: Back then the controversy was that we might accidentally cause a problem—for example, putting an Se40 cancer gene into an E coli vector, a gut bacteria, thereby accidentally causing colon cancer. None of those fears materialized, but they were combined with fears that had been around since in vitro fertilization began, at about the same time. Even if we didn't make a mistake, we might go off and start devaluing life or something, which also hasn't yet happened. Now that we have really powerful ways of engineering human cells, those issues have come up again.

Dr Topol: Let's fast-forward to the past few years, when genome editing has become center stage. You've been a principal in that. For those who are not fully initiated, can you describe why CRISPR is such a big deal?

Dr Church: Our group and others have pursued about 10 different ways of doing genome editing since I started my lab in 1986. This is the first technique that works well in every species. We have some that work well in E coli but don't work in humans. We have others that work in humans, but they were very hard to repurpose for a new gene. This one is the easiest. For $60 you can get a kit from a nonprofit, and along with a regular microbiology lab, you are up and running. Every organism has been tried and it works. It's mainly academic excitement. When you get to therapeutics, where you are going to be spending half a billion to a billion dollars on clinical testing, I don't think it's that significant. But then the second feature comes in, which is not just the ease of use but the efficiency of editing.

Dr Topol: That's pinpoint precision—when you want to take out an "A" and go right there. You don't want any off-target effects, because that could have harmful consequences. So how good are we at precision editing?

Dr Church: Straight out of the box, with a good computer program predicting where you should do the editing, you can get error rates down lower than the spontaneous mutation rate, meaning that the stuff just hitting you in the air is worse. There are about six new technologies for improving the editing error rate, and it's hard to say why if we're already below the spontaneous mutation rate. But those are another factor of 1000. If you do it from a clonal cell line, such as a stem cell line, and you characterize the clone, that's another factor of 1 million. So we were many orders of magnitude. That doesn't mean that something can't go wrong, but it's probably going to be a systems biology error rather than an off-target DNA. That would my prediction.

Dr Topol: So, you think that the chance of having a downstream untoward consequence years later, such as cancer, is quite unlikely?

Dr Church: As long as you use the best practices, you would have to hit a tumor suppressor gene, which means that you would have to have off-targets there. Because you can test all of this stuff in advance, it's unlikely that you are going to get off-target. But there are systems biology issues. When you change one thing by any mechanism, by drugs or gene therapy, you get a secondary effect that has nothing to do with DNA.

Dr Topol: It's complicated.

Dr. Church: That is what we need to remind ourselves of, and that's why we do the clinical trials.

Gene Editing of Embryos

Dr Topol: Speaking of clinical trials, there are now a number in genome editing for rare diseases, and some that are not so rare, such as hemophilia and sickle cell disease. Is it good to get these into clinical trials?

Dr Church: There are 2000 clinical trials for gene therapies in general. Only a tiny subset are in gene editing so far. But in 2017 we will start seeing the first CRISPR trials going on. And that will blow up to be at least as big as the rest of gene therapy. Some are even more common than hemophilia and sickle cell disease—there are infectious diseases, HIV, and cancer. There are already clinical trials on the universal CAR T cells for anticancer therapy.

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.

processing....