A simple, two-ingredient gel may boost the fighting power of a groundbreaking cancer treatment, say Stanford University engineers.
The gel ― made from water and a plant-based polymer – delivers targeted T cells adjacent to a cancer growth, taking aim at solid tumors.
It's the latest development in CAR T-cell therapy, a type of immunotherapy that involves collecting the patient's T cells, reengineering them to be stronger, and returning them to the patient's body.
Results have been promising in blood cancers, such as leukemia and lymphoma, but less so in solid tumors, such as brain, breast, or kidney cancer, according to the National Cancer Institute.
The gel "is a really exciting step forward," says Abigail Grosskopf, a PhD candidate who is the lead study author, "because it can change the delivery of these cells and expand this kind of treatment to other cancers."
CAR T-Cell Therapy: Limits in Solid Tumors
Currently available CAR T-cell therapies are administered by intravenous infusion. But that doesn't do much against tumors in specific locations because the cells enter the bloodstream and flow throughout the body. The cancer-fighting effort exhausts the T cells, weakening their ability to infiltrate dense tumors.
CAR T cells need cytokines to tell them when to attack, Grosskopf explains.