Cure, Prevent, or Manage All Disease: The Chan Zuckerberg Initiative's Bold Plan Is Already Working

Cure, Prevent, or Manage All Disease: The Chan Zuckerberg Initiative's Bold Plan Is Already Working

Disclosures

April 28, 2022

38

This transcript has been edited for clarity 

Eric J. Topol, MD: This is really a great occasion to have a chance to meet with Priscilla Chan and Mark Zuckerberg and discuss the remarkable progress and dedication at the Chan Zuckerberg Initiative (CZI). CZI has been around for well over 5 years now. And it also coincides with the 10-year anniversary of you two getting married. To get it started, how did you conceive the idea of CZI — the purpose of which is to cure, prevent, or manage all diseases by 2100?

Priscilla Chan, MD, Co-Founder and Co-CEO, CZI: We both knew that we always wanted to give back. And we knew that we were going to put a lot of time and effort into making sure that we are doing our part in building a better future.

And I want to be clear, we chose really big sectors that we're working in. Science. Education. Cure, prevent, or manage all disease. Huge, audacious goals. The part that we wanted to get smart on is where our niche was going to be, what we could bring that was differentiated in the field to help everyone make progress. And so for the past 5 years, we've really experimented with different models, different ways of building things — inside CZI's four walls, outside of CZI's four walls, partnering with folks all across the field to try to figure out where our niche is and where we can do our best work.

Topol: The part that's dedicated to life science and medicine is pretty extraordinary. It was back in 1994 when I came across The Economist saying that all serious diseases would be cured by 2050. So at least you weren't as bold as that. You said end of the century.

Mark Zuckerberg, Co-Founder and Co-CEO, CZI: No, and we don't necessarily think that they are all going to be cured. That's why it's cure, be able to prevent upfront, or just be able to manage them as ongoing chronic diseases. The goal is that if we can help accelerate the field of science, then we can bring in that time when we get to the state that we are able to manage all these things better and create a better world for our kids' generation and generations after that.

Chan: There's a rule of thumb, Mark, that you like to share: You overestimate what you can do in a year.

Zuckerberg: People always overestimate what they can get done in a year or two and often dramatically underestimate what they can get done if they work consistently on something over a longer period of time. So in tech, they say 10 years. I think science is a somewhat longer timeframe.

But there are a lot of really brilliant people working in the field. We view our goal as basically building tools, especially with my background as an engineer who built this company and built operations at scale, being able to deliver tools that all scientists can use to accelerate toward the state of being able to either cure, prevent, or manage all diseases. It seems like it's worth going at. And I don't know, maybe 2050 is too ambitious, but I'm still optimistic that by the end of this century, we'll have made a lot of progress toward it.

Topol: I thought that picking another 80-some years to work with gave you a little extra leeway compared to that earlier projection. So actually, creating tools is a really important point, because many people think it's all about breakthroughs, whereas you've taken a different track. A really nice example is Ed Boyden and optogenetics, where you can actually see human biology in action. Could you give some examples of other tools that you've been backing that you see as promising?

Zuckerberg: Maybe I'll talk about one that I find interesting and you can, too.

Chan: Sure.

Zuckerberg: One of the first projects that we took on was helping to work with the community to pull together a standardized format for these cell atlases. And this is not just one project. The Biohub has been working on a number of different atlases for different organisms.

But at CZI, we've helped to build this tool, cellxgene, that people can use to browse, really efficiently, all of the different data that people are putting in. There have been some interesting cases around this, where if you look at autoimmune diseases, people want to see how immune cells are responding to this. We've had cases where scientists have been able to look and see how sets of a million cells or more respond to different things. It's been really cool and powerful to see, as an example of a tool to help the field make progress.

Topol: And to that point, the Cell Atlas, which has a number of imminent major publications — just yesterday, in Nature Aging, they reported a frailty-specific monocyte. They took cells from the fetal stage all the way to elderly. So the periodic table of cells that you've come up with is an extraordinary tool, which I know is going to enable a lot of things.

Zuckerberg: This is clearly an effort that is much bigger than what we're doing. The whole field — there are thousands of people working on this across different institutions around the world. But I think part of the role that we can play is through funding, helping to standardize some of the data formats and then use engineering to build tools to make it more easily accessible to people, and open access.

Those are two of the contributions there that we're proud of. But it's really important to us to not shortchange all the work that everyone out in the field is doing. We feel like we're tool builders that help to arm people. The Cell Atlas isn't a thing that we are doing.

Chan: The one that I was going to bring up is similarly built off of an existing field of open-source software, and folks building stuff, tinkering in their labs. So it's like, I need a tool, I can put something together, and it's napari. Napari is a tool to help analyze data that come out of the amazing microscopes that exist in universities and laboratories. Right now, without efficient and modern tools to pair with this phenomenal hardware, it can take scientists a really long time to be able to gather insights from the data they collect. So we're building napari with the open-source community to help everyone be able to gather the insights and analysis that they need from the data.

But the thing that's really fun and cool is to see the community that's coming around the napari hub. Everyone has slightly different needs, and so they're building plug-ins that come together on this shared platform that can meet individual needs, and a community of people are sharing Here's how I work with this, here's how this works. Because what we've seen is that people doing this work — creative, curious scientists — aren't just going to take the tool at face value. They want to tinker. They want to understand how it works. They want to partner with someone else to try a new way of looking at things. And I think that's really exciting.

Topol: What's interesting is this fusion of Mark's background in engineering and computing with yours in medicine, as a pediatrician. You each gave some examples of tools from the opposite space, yours from AI and Mark's from biology. It's striking how the two of you came together with different backgrounds, and it represents the future of life science and medicine in so many respects.

One thing that was really interesting is the philosophy you brought to CZI and the Biohub. It's different from, say, the National Institutes of Health (NIH), which is our major funding source. You're really into open science and open everything, like your support of bioRxiv and medRxiv to get all these pandemic preprints and everything else out, and napari, but you are also betting on talent. What I am impressed about with the Biohub is how investigators are selected based on their promise — young investigators, by the way, not necessarily the old folks, who have multiple grants already and a proven track record.

And other things, like the fact that it's international. Almost 40% are from outside the United States, 40% are computing scientists, and 40% are less than 6 years into their careers. These are not the characteristics of other life science support entities. Could you talk about your philosophy when you got started and what you've learned in these first 5 years of the CZI and the Biohub? Is that working? The things that you selected — your big bets, if you will — are they clicking?

Chan: The Biohub is really interesting because it's part of that culture change that is happening in science that we're excited to be able to support. The Biohub investigators are early in their careers, diverse, and excited to think about how science can be done differently.

But one thing that they have selected themselves is that they are collaborative. They want to learn from someone who has completely different training from them. They all have different backgrounds. Sometimes you have a microbiologist working with an engineer. How do their fields come together? We have physicists coming in. How do they actually take what they know from their different disciplines to drive breakthroughs?

What you see there is that as in medicine, you get super-specialized, and sometimes you lose sight of the bigger picture and the knowledge that's gained in other fields. The investigators at the Biohub are really excited about the fact that people from different walks of science help solve important problems. The other thing that has to be true is a lack of ego. They're results-driven. They want to get the science down. So that's been really fun to be able to support.

We found that academia plays an incredibly important role in breakthroughs. Industry does a lot in making sure that products reach patients. But there's a space in the middle. The Biohub has helped with big problems that will need coordinated, long-term attention but don't have immediate commercial value. And that bigger hive, if you will, that we've been able to bring together at the Biohub has driven incredible progress. That's why we put out a request for proposals for Biohub number two, and we got 58 proposals from across the country.

  • 38

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.

processing....